(3t^2)+6t-101=0

Simple and best practice solution for (3t^2)+6t-101=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3t^2)+6t-101=0 equation:


Simplifying
(3t2) + 6t + -101 = 0

Reorder the terms:
-101 + 6t + (3t2) = 0

Solving
-101 + 6t + (3t2) = 0

Solving for variable 't'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-33.66666667 + 2t + t2 = 0

Move the constant term to the right:

Add '33.66666667' to each side of the equation.
-33.66666667 + 2t + 33.66666667 + t2 = 0 + 33.66666667

Reorder the terms:
-33.66666667 + 33.66666667 + 2t + t2 = 0 + 33.66666667

Combine like terms: -33.66666667 + 33.66666667 = 0.00000000
0.00000000 + 2t + t2 = 0 + 33.66666667
2t + t2 = 0 + 33.66666667

Combine like terms: 0 + 33.66666667 = 33.66666667
2t + t2 = 33.66666667

The t term is 2t.  Take half its coefficient (1).
Square it (1) and add it to both sides.

Add '1' to each side of the equation.
2t + 1 + t2 = 33.66666667 + 1

Reorder the terms:
1 + 2t + t2 = 33.66666667 + 1

Combine like terms: 33.66666667 + 1 = 34.66666667
1 + 2t + t2 = 34.66666667

Factor a perfect square on the left side:
((t) + 1)((t) + 1) = 34.66666667

Calculate the square root of the right side: 5.887840578

Break this problem into two subproblems by setting 
((t) + 1) equal to 5.887840578 and -5.887840578.

Subproblem 1

(t) + 1 = 5.887840578 Simplifying (t) + 1 = 5.887840578 t + 1 = 5.887840578 Reorder the terms: 1 + t = 5.887840578 Solving 1 + t = 5.887840578 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + t = 5.887840578 + -1 Combine like terms: 1 + -1 = 0 0 + t = 5.887840578 + -1 t = 5.887840578 + -1 Combine like terms: 5.887840578 + -1 = 4.887840578 t = 4.887840578 Simplifying t = 4.887840578

Subproblem 2

(t) + 1 = -5.887840578 Simplifying (t) + 1 = -5.887840578 t + 1 = -5.887840578 Reorder the terms: 1 + t = -5.887840578 Solving 1 + t = -5.887840578 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + t = -5.887840578 + -1 Combine like terms: 1 + -1 = 0 0 + t = -5.887840578 + -1 t = -5.887840578 + -1 Combine like terms: -5.887840578 + -1 = -6.887840578 t = -6.887840578 Simplifying t = -6.887840578

Solution

The solution to the problem is based on the solutions from the subproblems. t = {4.887840578, -6.887840578}

See similar equations:

| 6y=4-3(y-5) | | 5/6a=30 | | 24t+(2b)y+150= | | 28=x+3x-8 | | (3t^2)+12t-130=5 | | p^2+133p+196=0 | | (2x+4)=(x+7) | | (3t^2)+12t-130=0 | | 2=5xX-0.5 | | 8x^4-8x^2-x=1 | | 16+T=17 | | 154-x=247 | | 2t-1.6=4t-2.8 | | 3x-1/x^2 | | 1/x=1.117 | | 0=12x^2-72x+80 | | (x^2)+6x-130=0 | | 5X-14+X+32+3X+2= | | g(x)=26+0.15(x-200) | | 2x*2y=16 | | 6(x+3)+7=9x-3(x-4) | | 4x-24=14 | | 7xX+0.8=6.4 | | 2+4(5x-6)=9-4(2x+1) | | 0.5(x+300)=0.55x-240 | | 5y^2-4=29 | | -200=-16t^2+45t | | (X+25)+123=180 | | 9t+12=8t-7 | | 3x+3(4x-13)=4x-3x | | -29=11p+5o | | 1.5-x=0.7 |

Equations solver categories